Cytotoxicity of Carbon Nanotubes, Graphene, Fullerenes, and Dots

Nanomaterials (Basel). 2023 Apr 25;13(9):1458. doi: 10.3390/nano13091458.

Abstract

The cytotoxicity of carbon nanomaterials is a very important issue for microorganisms, animals, and humans. Here, we discuss the issues of cytotoxicity of carbon nanomaterials, carbon nanotubes, graphene, fullerene, and dots. Cytotoxicity issues, such as cell viability and drug release, are considered. The main part of the review is dedicated to important cell viability issues. They are presented for A549 human melanoma, E. coli, osteosarcoma, U2-OS, SAOS-2, MG63, U87, and U118 cell lines. Then, important drug release issues are discussed. Bioimaging results are shown here to illustrate the use of carbon derivatives as markers in any type of imaging used in vivo/in vitro. Finally, perspectives of the field are presented. The important issue is single-cell viability. It can allow a correlation of the functionality of organelles of single cells with the development of cancer. Such organelles are mitochondria, nuclei, vacuoles, and reticulum. It allows for finding biochemical evidence of cancer prevention in single cells. The development of investigation methods for single-cell level detection of viability stimulates the cytotoxicity investigative field. The development of single-cell microscopy is needed to improve the resolution and accuracy of investigations. The importance of cytotoxicity is drug release. It is important to control the amount of drug that is released. This is performed with pH, temperature, and electric stimulation. Further development of drug loading and bioimaging is important to decrease the cytotoxicity of carbon nanomaterials. We hope that this review is useful for researchers from all disciplines across the world.

Keywords: carbon dots; carbon nanotube; cytotoxicity; fullerene; graphene.

Publication types

  • Review

Grants and funding

These studies were partly performed during the implementation of the project Buildingup Centre for advanced materials application of the Slovak Academy of Sciences, ITMS project code 313021T081 supported by Research & Innovation Operational Programme funded by the ERDF. The APC was funded by University of Vienna.