Effects of Ti on the Microstructural Evolution and Mechanical Property of the SiBCN-Ti Composite Ceramics

Materials (Basel). 2023 May 6;16(9):3560. doi: 10.3390/ma16093560.

Abstract

In this study, amorphous + nanocrystalline Ti-BN mixed powders were obtained through first-step mechanical alloying; subsequently, almost completely amorphous SiBCN-Ti mixed powders were achieved in the second-step milling. The SiBCN-Ti bulk ceramics were consolidated through hot pressing sintering at 1900 °C/60 MPa/30 min, and the microstructural evolution and mechanical properties of the as-sintered composite ceramics were investigated using SEM, XRD, and TEM techniques. The as-sintered SiBCN-Ti bulk ceramics consisted of substantial nanosized BN(C), SiC, and Ti(C, N) with a small amount of Si2N2O and TiB2. The crystallized BN(C) enwrapped both SiC and Ti(C, N), thus effectively inhibiting the rapid growth of SiC and Ti(C, N). The sizes of SiC were ~70 nm, while the sizes of Ti(C, N) were below 30 nm, and the sizes of Si2N2O were over 100 nm. The SiBCN-20 wt.% Ti bulk ceramics obtained the highest flexural strength of 394.0 ± 19.0 MPa; however, the SiBCN-30 wt.% Ti bulk ceramics exhibited the optimized fracture toughness of 3.95 ± 0.21 GPa·cm1/2, Vickers hardness of 4.7 ± 0.27 GPa, Young's modulus of 184.2 ± 8.2 GPa, and a bulk density of 2.85 g/cm3. The addition of metal Ti into a SiBCN ceramic matrix seems to be an effective strategy for microstructure optimization and the tuning of mechanical properties, thus providing design ideas for further research regarding this family of ceramic materials.

Keywords: SiBCN; Ti; mechanical alloying; mechanical properties; microstructural evolution.