Microwave-Assisted Synthesis and Spectral Properties of Pyrrolidine-Fused Chlorin Derivatives

Molecules. 2023 Apr 30;28(9):3833. doi: 10.3390/molecules28093833.

Abstract

In this work we pursued research involving the microwave-assisted N-alkylation of a NH pyrrolidine-fused chlorin with methyl 4-(bromomethyl) benzoate and subsequent ester hydrolysis as a straightforward strategy to obtain carboxylic acid functionality in the pyrrolidine-fused chlorin, as a single reaction product. We studied the reaction's scope by extending the N-alkylation of the free-base chlorin and its corresponding Zn(II) complex to other alkyl halides, including 1,4-diiodobutane, N-(2-bromoethyl)phthalimide, and 2-bromoethanaminium bromide. In addition, two new chlorin-dansyl dyads were synthesized by reacting dansyl chloride with the 2-aminoethyl pyrrolidine-fused chlorin (dyad 6) and NH pyrrolidine-fused chlorin (dyad 7). According to spectral studies, the linker length between the two fluorophores influences the response of the dyads to the solvent polarity. Because of the simplicity of these approaches, we believe it will enable access to a vast library of custom-tailored N-functionalized chlorins while preserving their important absorption and emission spectra as photosensitizers in photodynamic therapy (PDT) of cancer and photodynamic inactivation (PDI) of microorganisms.

Keywords: N-alkylation; chlorins; dansyl chloride; microwave irradiation; solvent dependent fluorescence.