Effects of Curcumin on Growth Performance, Ruminal Fermentation, Rumen Microbial Protein Synthesis, and Serum Antioxidant Capacity in Housed Growing Lambs

Animals (Basel). 2023 Apr 23;13(9):1439. doi: 10.3390/ani13091439.

Abstract

This experiment was conducted to investigate growth performance, ruminal fermentation, rumen microbial protein synthesis, and serum antioxidant capacity with different doses of curcumin (CUR) included in the diet of housed growing lambs. Forty-eight four-month-old Dorper × Thin-tailed Han F1 crossbred male lambs (body weight = 20.89 ± 1.15 kg, age = 120 ± 10 days; mean ± SD) were randomly divided into four groups for a single-factor, completely randomized experiment. Treatments comprised the following: the basal diet supplemented with 0 (Control), 300 mg/kg (300 CUR), 600 mg/kg (600 CUR), or 900 mg/kg (900 CUR) CUR, respectively. The results showed that dietary CUR increased average daily gain (ADG), and the 300 CUR group evidenced the highest value. There were no significant effects on dry matter intake (DMI) and DMI/ADG. Lambs in the 300 CUR group showed higher totals of volatile fatty acids (VFA) and acetate than other groups, while decreased valerate was observed with supplementary CUR. The ruminal pH and ammonia N (NH3-N) concentration decreased with increasing CUR, with the greatest effect in the 300 CUR group. The quadratic effects were found in pectinase, carboxymethyl cellulose, and protease, with the greatest value in the 300 CUR group. The microbial populations of total bacteria and Ruminococcus albus also responded quadratically, and the methanogens, protozoan, and Fibrobacter succinogenes populations decreased linearly with increasing CUR. Lambs receiving additional CUR showed increased Prevotella ruminicola population. Microbial protein (MCP) synthesis was promoted by supplementary CUR. As supplementation with CUR increased, the serum activity of total antioxidant capacity (T-AOC), superoxide dismutase (SOD), and glutathione peroxidase (GSH-Px) was enhanced, with the greatest value in the 300 CUR group. In conclusion, dietary CUR improved ruminal fermentation, promoted rumen microbial protein (MCP) synthesis, and enhanced serum antioxidant activity, as well as promoting growth performance in housed growing lambs.

Keywords: antioxidant; curcumin; growth performance; lambs; microbial protein; ruminal fermentation.