Tumor Suppressor Candidate 2 (TUSC2): Discovery, Functions, and Cancer Therapy

Cancers (Basel). 2023 Apr 25;15(9):2455. doi: 10.3390/cancers15092455.

Abstract

Tumor Suppressor Candidate 2 (TUSC2) was first discovered as a potential tumor suppressor gene residing in the frequently deleted 3p21.3 chromosomal region. Since its discovery, TUSC2 has been found to play vital roles in normal immune function, and TUSC2 loss is associated with the development of autoimmune diseases as well as impaired responses within the innate immune system. TUSC2 also plays a vital role in regulating normal cellular mitochondrial calcium movement and homeostasis. Moreover, TUSC2 serves as an important factor in premature aging. In addition to TUSC2's normal cellular functions, TUSC2 has been studied as a tumor suppressor gene that is frequently deleted or lost in a multitude of cancers, including glioma, sarcoma, and cancers of the lung, breast, ovaries, and thyroid. TUSC2 is frequently lost in cancer due to somatic deletion within the 3p21.3 region, transcriptional inactivation via TUSC2 promoter methylation, post-transcriptional regulation via microRNAs, and post-translational regulation via polyubiquitination and proteasomal degradation. Additionally, restoration of TUSC2 expression promotes tumor suppression, eventuating in decreased cell proliferation, stemness, and tumor growth, as well as increased apoptosis. Consequently, TUSC2 gene therapy has been tested in patients with non-small cell lung cancer. This review will focus on the current understanding of TUSC2 functions in both normal and cancerous tissues, mechanisms of TUSC2 loss, TUSC2 cancer therapeutics, open questions, and future directions.

Keywords: N-terminal myristoylation; TUSC2; apoptosis; cancer; mitochondrial calcium homeostasis; tumor suppressor.

Publication types

  • Review