Effect of basal metabolic rate on lifespan: a sex-specific Mendelian randomization study

Sci Rep. 2023 May 12;13(1):7761. doi: 10.1038/s41598-023-34410-6.

Abstract

Observationally, the association of basal metabolic rate (BMR) with mortality is mixed, although some ageing theories suggest that higher BMR should reduce lifespan. It remains unclear whether a causal association exists. In this one-sample Mendelian randomization study, we aimed to estimate the casual effect of BMR on parental attained age, a proxy for lifespan, using two-sample Mendelian randomization methods. We obtained genetic variants strongly (p-value < 5 × 10-8) and independently (r2 < 0.001) predicting BMR from the UK Biobank and applied them to a genome-wide association study of parental attained age based on the UK Biobank. We meta-analyzed genetic variant-specific Wald ratios using inverse-variance weighting with multiplicative random effects by sex, supplemented by sensitivity analysis. A total of 178 and 180 genetic variants predicting BMR in men and women were available for father's and mother's attained age, respectively. Genetically predicted BMR was inversely associated with father's and mother's attained age (years of life lost per unit increase in effect size of genetically predicted BMR, 0.46 and 1.36; 95% confidence interval 0.07-0.85 and 0.89-1.82), with a stronger association in women than men. In conclusion, higher BMR might reduce lifespan. The underlying pathways linking to major causes of death and relevant interventions warrant further investigation.

MeSH terms

  • Basal Metabolism / genetics
  • Causality
  • Female
  • Genome-Wide Association Study*
  • Humans
  • Longevity* / genetics
  • Male
  • Mendelian Randomization Analysis
  • Polymorphism, Single Nucleotide