Insight into the microbial nitrogen cycle in riparian soils in an agricultural region

Environ Res. 2023 Aug 15;231(Pt 1):116100. doi: 10.1016/j.envres.2023.116100. Epub 2023 May 11.

Abstract

Riparian zones are considered as an effective measure on preventing agricultural non-point source nitrogen (N) pollution. However, the mechanism underlying microbial N removal and the characteristics of N-cycle in riparian soils remain elusive. In this study, we systematically monitored the soil potential nitrification rate (PNR), denitrification potential (DP), as well as net N2O production rate, and further used metagenomic sequencing to elucidate the mechanism underlying microbial N removal. As a whole, the riparian soil had a very strong denitrification, with the DP 3.17 times higher than the PNR and 13.82 times higher than the net N2O production rate. This was closely related to the high soil NO3--N content. In different profiles, due to the influence of extensive agricultural activities, the soil DP, PNR, and net N2O production rate near the farmland edge were relatively low. In terms of N-cycling microbial community composition, the taxa of denitrification, dissimilatory nitrate reduction, and assimilatory nitrate reduction accounted for a large proportion, all related to NO3--N reduction. The N-cycling microbial community in waterside zone showed obvious differences to the landside zone. The abundances of N-fixation and anammox genes were significantly higher in the waterside zone, while the abundances of nitrification (amoA&B&C) and urease genes were significantly higher in the landside zone. Furthermore, the groundwater table was an important biogeochemical hotspot in the waterside zone, the abundance of N-cycle genes near the groundwater table was at a relative higher level. In addition, compared to different soil depths, greater variation in N-cycling microbial community composition was observed between different profiles. These results reveal some characteristics of the soil microbial N-cycle in the riparian zone in an agricultural region and are helpful for restoration and management of the riparian zone.

Keywords: Agricultural non-point source; Nitrogen cycle; Riparian zone; Soil metagenome.

MeSH terms

  • Denitrification*
  • Nitrates / analysis
  • Nitrification
  • Nitrogen
  • Nitrogen Cycle
  • Soil Microbiology
  • Soil*

Substances

  • Soil
  • Nitrates
  • Nitrogen