High-performance electrode of ZIF-67 metal-organic framework (MOF) loaded laser-induced graphene (LIG) composite for all-solid-state supercapacitor

Nanotechnology. 2023 May 12;34(30). doi: 10.1088/1361-6528/acd00b.

Abstract

This work demonstrates a facile and efficient methodology to synthesize a composite material of zeolitic imidazolate frameworks (ZIFs) and laser-induced graphene (LIG). This ZIF-67 loaded LIG composite (ZIF-67/LIG) has been adequately characterized for its morphology and structure, and its electrochemical performance has been specifically examined. As supercapacitors (SCs) electrode material, the ZIF-67/LIG composite exhibits superb electrochemical performance, owing to the inherent high porosity, abundant active sites, large specific surface area of ZIF-67, and the excellent conductive three-dimensional hierarchical porous network structure provided by LIG. In three-electrode system, ZIF-67/LIG composite electrode displays outstanding areal specific capacitance (CA) of 135.6 mF cm-2at a current density of 1 mA cm-2with 1 M Na2SO4aqueous electrolyte, which is far greater than that of pristine LIG (7.7 mF cm-2). Furthermore, the ZIF-67/LIG composite has been fabricated into an all-solid-state planar micro-supercapacitor (MSC). This ZIF-67/LIG MSC exhibits an impressiveCAof 38.1 mF cm-2at a current density of 0.20 mA cm-2, a good cycling stability of 80.3% capacitance retention after 3000 cycles, and a high energy density of 5.29μWh cm-2at a power density of 0.1 mW cm-2. All electrochemical results clearly manifest that as-prepared ZIF-67/LIG composite can be a candidate in energy storage field with exciting possibilities.

Keywords: composite; energy storage; laser-induced graphene; supercapacitors; zeolitic imidazolate frameworks.