A Chromosome-level Genome Assembly and Evolution Analysis of Andrena camellia (Hymenoptera: Andrenidae)

Genome Biol Evol. 2023 May 12;15(5):evad080. doi: 10.1093/gbe/evad080. Online ahead of print.

Abstract

Andrena camellia, an effective pollinator of the economicallysignificant crop Camellia oleifera, can withstand the toxic pollen of C. oleifera, making A. camellia a crucial for resource conservation and cultivation of C. oleifera. In this study, the whole genome of A. camellia was sequenced on the Oxford Nanopore platform. The assembled genome size was 340.73 Mb including 50 scaffolds (N50=47.435 Mb) and 131 contigs (N50=17.2 Mb). A total of 11, 258 protein-coding genes were annotated, in addition, 1,104 non-coding RNAs were identified. Further analysis that some chromosomes of A. camellia have a high level of synteny with those of Apis mellifera, Osmia bicornis and Andrena minutula. Thus, our reported genome of A. camellia serves as a valuable resource for studying species evolution, behavioral biology, and adaption to toxic pollen of C. oleifera.

Keywords: Andrena camellia; chromosome-level assembly; comparative genome; genome evolution.