Identification of the alternative sigma factor regulons of Chlamydia trachomatis using multiplexed CRISPR interference

bioRxiv [Preprint]. 2023 Apr 28:2023.04.27.538638. doi: 10.1101/2023.04.27.538638.

Abstract

C. trachomatis is a developmentally regulated, obligate intracellular bacterium that encodes three sigma factors: σ66, σ54, and σ28. σ66 is the major sigma factor controlling most transcription initiation during early and mid-cycle development as the infectious EB transitions to the non-infectious RB that replicates within an inclusion inside the cell. The roles of the minor sigma factors, σ54 and σ28, have not been well characterized to date - however, there are data to suggest each functions in late-stage development and secondary differentiation as RBs transition to EBs. As the process of secondary differentiation itself is poorly characterized, clarifying the function of these alternative sigma factors by identifying the genes regulated by them will further our understanding of chlamydial differentiation. We hypothesize that σ54 and σ28 have non-redundant and essential functions for initiating late gene transcription thus mediating secondary differentiation in Chlamydia . Here, we demonstrate the necessity of each minor sigma factor in successfully completing the developmental cycle. We have implemented and validated multiplexed CRISPRi techniques novel to the chlamydial field to examine effects of knocking down each alternative sigma factor individually and simultaneously. In parallel, we also overexpressed each sigma factor. Altering transcript levels for either or both alternative sigma factors resulted in a severe defect in EB production as compared to controls. Furthermore, RNA sequencing identified differentially expressed genes during alternative sigma factor dysregulation, indicating the putative regulons of each. These data demonstrate the levels of alternative sigma factors must be carefully regulated to facilitate chlamydial growth and differentiation.

Importance: Chlamydia trachomatis is a significant human pathogen in both developed and developing nations. Due to the organism's unique developmental cycle and intracellular niche, basic research has been slow and arduous. However, recent advances in chlamydial genetics have allowed the field to make significant progress in experimentally interrogating the basic physiology of Chlamydia . Broadly speaking, the driving factors of chlamydial development are poorly understood, particularly regarding how the later stages of development are regulated. Here, we employ a novel genetic tool for use in Chlamydia while investigating the effects of dysregulating the two alternative sigma factors in the organism that help control transcription initiation. We provide further evidence for both sigma factors' essential roles in late-stage development and their potential regulons, laying the foundation for deeper experimentation to uncover the molecular pathways involved in chlamydial differentiation.

Publication types

  • Preprint