Peptide-triggered self-assembly of collagen mimetic peptides into nanospheres by electrostatic interaction and π-π stacking

J Mater Chem B. 2023 May 31;11(21):4677-4683. doi: 10.1039/d3tb00088e.

Abstract

Collagen is the most abundant protein in various connective tissues, providing mechanical integrity as well as regulating cellular activities. Self-assembled peptides have been extensively explored to develop collagen mimetic materials, due to their attractive features such as easy synthesis, selective sequences and low immunogenicity. Metal ion-triggered self-assembly of collagen mimetic peptides has recently received increasing interests, since the addition of external stimuli offers programmable control of the self-assembly process. We have for the first time reported a peptide-stimulated self-assembly of collagen mimetic peptides into nanospheres by electrostatic interaction and π-π stacking. We have accidentally discovered that FAM-modified positively-charged triple helical peptide FAM-PRG was highly soluble, while the addition of a single-stranded negatively-charged peptide EOG-10 efficiently drove its self-assembly into well-ordered spherical nanomaterials. Peptide EOG-10 has been shown to mediate similar self-assembly of TPE-modified triple-helical peptide TPE-PRG into luminescent exquisite nanospheres, consistently demonstrating the robustness of this peptide-triggered strategy. Fluorescence monitoring of the interaction of EOG-10 and TPE-PRG at different ratios indicated that EOG-10 specifically binds to TPE-PRG to form a 3 : 1 complex. High salt concentration was shown to inhibit the self-assembly of TPE-PRG with EOG-10, suggesting that their self-assembly was controlled by electrostatic interaction. The self-assembly of TPE-PRG with EOG-10 has been further revealed to require the exact lengths of both peptides as well as complementary sequences without mutations, indicating a pairwise "side-by-side" binding mode. Notably, the identity of the N-terminal residues of X-PRG has been found to play a determinant role in the self-assembly, while non-aromatic residues lost the self-assembling capability, suggesting that π-π stacking and electrostatic interactions collectively modulate the self-assembly of X-PRG and EOG-10. To conclude, we have developed a highly biocompatible and programmably controlled peptide-triggered self-assembly approach to create novel collagen mimetic nanomaterials, which may have great potential in advanced functional materials.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Collagen / chemistry
  • Nanospheres*
  • Nanostructures* / chemistry
  • Peptides / chemistry
  • Static Electricity

Substances

  • Peptides
  • Collagen