Quartz tuning fork-based high sensitive photodetector by co-coupling photoelectric and the thermoelastic effect of perovskite

Opt Express. 2023 Mar 13;31(6):10027-10037. doi: 10.1364/OE.485411.

Abstract

This paper reports a new strategy for enhancing the photoresponse of a quartz tuning fork (QTF). A deposited light absorbing layer on the surface of QTF could improve the performance only to a certain extent. Herein, a novel strategy is proposed to construct a Schottky junction on the QTF. The Schottky junction presented here consists of a silver-perovskite, which has extremely high light absorption coefficient and dramatically high power conversion efficiency. The co-coupling of the perovskite's photoelectric effect and its related QTF thermoelastic effect leads to a dramatic improvement in the radiation detection performance. Experimental results indicate that the CH3NH3PbI3-QTF obtains two orders of magnitude enhancement in sensitivity and SNR, and the 1σ detection limit was calculated to be 1.9 µW. It was the first time that the QTF resonance detection and perovskite Schottky junction was combined for optical detection. The presented design could be used in photoacoustic spectroscopy and thermoelastic spectroscopy for trace gas sensing.