Complexities in attributing lead contamination to specific sources in an industrial area of Philadelphia, PA

Heliyon. 2023 Apr 21;9(5):e15666. doi: 10.1016/j.heliyon.2023.e15666. eCollection 2023 May.

Abstract

Globally, lead (Pb) contamination is one of the top ten chemical exposure issues affecting public health. The identification of specific Pb sources provides valuable information to determine assignment of liability for site cleanup, improve sampling plans and develop remedial strategies. This paper examines Pb concentrations and Pb isotopic data from samples collected at and near the site of a Pb paint production facility with a long operating history. Although high soil Pb concentrations were found at the site, Pb concentrations in surrounding neighborhoods did not simply decline with distance from the site. We evaluated soil concentrations and isotopic mixing lines to explore potential sources of Pb pollution. Three-isotope plots showed overlap of site samples and the surrounding neighborhood, consistent with pollution from the facility affecting offsite soils. A major challenge in separation of potential sources, however, is that the isotopic signatures of other potential Pb sources fall within the range of the soil data. The long operational site history, soil disturbances, the presence of nearby smelters, and other local and remote sources affect identification of lead sources. This analysis demonstrates that source attribution can be confounded by incomplete site and material sourcing information. An integrated approach that includes in-depth site characterization and an evaluation of historical activities (e.g., Pb ores used over time, amounts of Pb emitted by all area smelters, land use changes, and soil disturbances) is important for determining source attribution. This analysis provides insight into future site investigations where soil lead contamination has resulted from a long industrial history in an urban setting.

Keywords: Lead; Lead isotopes; Soil; Urban lead.