Identification of F-box gene family in Brassica oleracea and expression analysis in response to low-temperature stress

Plant Physiol Biochem. 2023 Jun:199:107717. doi: 10.1016/j.plaphy.2023.107717. Epub 2023 Apr 27.

Abstract

Unfavorable climatic conditions, such as low temperatures, often hinder the growth and production of crops worldwide. The F-box protein-encoding gene family performs an essential role in plant stress resistance. However, a comprehensive analysis of the F-box gene family in cabbage (Brassica oleracea var capitata L.) has not been reported yet. In this study, genome-wide characterization of F-box proteins in cabbage yielded 303 BoFBX genes and 224 BoFBX genes unevenly distributed on 9 chromosomes of cabbage. Phylogenetic analysis of 303 BoFBX genes was classified into nine distinct subfamily groups (GI-GIX). Analysis of the gene structure of BoFBX genes indicated that most genes within the same clade are highly conserved. In addition, tissue-specific expression analysis revealed that six F-box genes in cabbage showed the highest expression in rosette leaves, followed by roots and stems and the lowest expression was observed in the BoFBX156 gene. In contrast, the expression of the other five genes, BoFBX100, BoFBX117, BoFBX136, BoFBX137 and BoFBX213 was observed to be upregulated in response to low-temperature stress. Moreover, we found that the expression level of the BoFBX gene in the cold-tolerant cultivar "ZG" was higher than that in cold-sensitive "YC" with the extension of stress duration, while expression levels of each gene in "ZG" were higher than "YC" at 24 h. Knowledge of the various functions provided by BoFBXs genes and their expression patterns provides a firm theoretical foundation for explaining the functions of BoFBXs, thereby contributing to the molecular breeding process of cabbage.

Keywords: Bioinformatic analysis; Brassica oleracea; F-box genes; Gene expression; Low-temperature stress.

MeSH terms

  • Brassica* / genetics
  • Brassica* / metabolism
  • Gene Expression Profiling
  • Gene Expression Regulation, Plant
  • Genome, Plant*
  • Phylogeny
  • Plant Proteins / metabolism
  • Temperature

Substances

  • Plant Proteins