Origin of hydroxyl pair formation on reduced anatase TiO2(101)

Phys Chem Chem Phys. 2023 May 17;25(19):13645-13653. doi: 10.1039/d3cp01051a.

Abstract

The interaction of water with metal oxide surfaces is of key importance to several research fields and applications. Because of its ability to photo-catalyze water splitting, reducible anatase TiO2 (a-TiO2) is of particular interest. Here, we combine experiments and theory to study the dissociation of water on bulk-reduced a-TiO2(101). Following large water exposures at room temperature, point-like protrusions appear on the a-TiO2(101) surface, as shown by scanning tunneling microscopy (STM). These protrusions originate from hydroxyl pairs, consisting of terminal and bridging OH groups, OHt/OHb, as revealed by infrared reflection absorption spectroscopy (IRRAS) and valence band experiments. Utilizing density functional theory (DFT) calculations, we offer a comprehensive model of the water/a-TiO2(101) interaction. This model also explains why the hydroxyl pairs are thermally stable up to ∼480 K.