Ultrathin Co-N-C Layer Modified Pt-Co Intermetallic Nanoparticles Leading to a High-Performance Electrocatalyst toward Oxygen Reduction and Methanol Oxidation

Small. 2023 Sep;19(37):e2301337. doi: 10.1002/smll.202301337. Epub 2023 May 5.

Abstract

The development of low platinum-based alloy electrocatalysts is crucial to accelerate the commercialization of fuel cells, yet remains a synthetic challenge and an incompatibility between activity and stability. Herein, a facile procedure to fabricate a high-performance composite that comprises Pt-Co intermetallic nanoparticles (IMNs) and Co, N co-doped carbon (Co-N-C) electrocatalyst is proposed. It is prepared by direct annealing of homemade carbon black-supported Pt nanoparticles (Pt/KB) covered with a Co-phenanthroline complex. During this process, most of Co atoms in the complex are alloyed with Pt to form ordered Pt-Co IMNs, while some Co atoms are atomically dispersed and doped in the framework of superthin carbon layer derived from phenanthroline, which is coordinated with N to form Co-Nx moieties. Moreover, the Co-N-C film obtained from complex is observed to cover the surface of Pt-Co IMNs, which prevent the dissolution and agglomeration of nanoparticles. The composite catalyst exhibits high activity and stability toward oxygen reduction reactions (ORR) and methanol oxidation reactions (MOR), delivering outstanding mass activities of 1.96 and 2.92 A mgPt -1 for ORR and MOR respectively, owing to the synergistic effect of Pt-Co IMNs and Co-N-C film. This study may provide a promising strategy to improve the electrocatalytic performance of Pt-based catalysts.

Keywords: Co-N-C layers; Pt-Co intermetallic compounds; anodic methanol oxidation; fuel cells; low platinum catalysts; oxygen reduction.