Biomaterials for chimeric antigen receptor T cell engineering

Acta Biomater. 2023 Aug:166:1-13. doi: 10.1016/j.actbio.2023.04.043. Epub 2023 May 2.

Abstract

Chimeric antigen receptor T (CAR-T) cells have achieved breakthrough efficacies against hematological malignancies, but their unsatisfactory efficacies in solid tumors limit their applications. The prohibitively high prices further restrict their access to broader populations. Novel strategies are urgently needed to address these challenges, and engineering biomaterials can be one promising approach. The established process for manufacturing CAR-T cells involves multiple steps, and biomaterials can help simplify or improve several of them. In this review, we cover recent progress in engineering biomaterials for producing or stimulating CAR-T cells. We focus on the engineering of non-viral gene delivery nanoparticles for transducing CAR into T cells ex vivo/in vitro or in vivo. We also dive into the engineering of nano-/microparticles or implantable scaffolds for local delivery or stimulation of CAR-T cells. These biomaterial-based strategies can potentially change the way CAR-T cells are manufactured, significantly reducing their cost. Modulating the tumor microenvironment with the biomaterials can also considerably enhance the efficacy of CAR-T cells in solid tumors. We pay special attention to progress made in the past five years, and perspectives on future challenges and opportunities are also discussed. STATEMENT OF SIGNIFICANCE: Chimeric antigen receptor T (CAR-T) cell therapies have revolutionized the field of cancer immunotherapy with genetically engineered tumor recognition. They are also promising for treating many other diseases. However, the widespread application of CAR-T cell therapy has been hampered by the high manufacturing cost. Poor penetration of CAR-T cells into solid tissues further restricted their use. While biological strategies have been explored to improve CAR-T cell therapies, such as identifying new cancer targets or integrating smart CARs, biomaterial engineering provides alternative strategies toward better CAR-T cells. In this review, we summarize recent advances in engineering biomaterials for CAR-T cell improvement. Biomaterials ranging from nano-, micro-, and macro-scales have been developed to assist CAR-T cell manufacturing and formulation.

Keywords: Chimeric antigen receptor T cell therapy; Implantable scaffolds; Nano-microparticles; Non-viral transduction.

Publication types

  • Review
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Cell Engineering
  • Humans
  • Neoplasms* / therapy
  • Receptors, Antigen, T-Cell / genetics
  • Receptors, Chimeric Antigen* / genetics
  • T-Lymphocytes
  • Tumor Microenvironment

Substances

  • Receptors, Chimeric Antigen
  • Receptors, Antigen, T-Cell