The Efficiency of p27 Cleavage during In Vitro Respiratory Syncytial Virus (RSV) Infection Is Cell Line and RSV Subtype Dependent

J Virol. 2023 May 31;97(5):e0025423. doi: 10.1128/jvi.00254-23. Epub 2023 May 3.

Abstract

Respiratory syncytial virus (RSV) fusion protein (F) is highly conserved between subtypes A and B (RSV/A and RSV/B). To become fully active, F precursor undergoes enzymatic cleavage to yield F1 and F2 subunits and releases a 27-amino-acid peptide (p27). Virus-cell fusion occurs when RSV F undergoes a conformational change from pre-F to post-F. Previous data show that p27 is detected on RSV F, but questions remain regarding if and how p27 affects the conformation of mature RSV F. Monoclonal antibodies against p27, site Ø (pre-F specific), and site II were used to monitor RSV F conformation by enzyme-linked immunosorbent assay (ELISA) and imaging flow cytometry. Pre-F to post-F conformational change was induced by a temperature stress test. We found that p27 cleavage efficiency was lower on sucrose-purified RSV/A (spRSV/A) than on spRSV/B. In addition, cleavage of RSV F was cell line dependent: HEp-2 cells had higher retention of p27 than did A549 cells when infected with RSV. Higher levels of p27 were also found on RSV/A-infected cells than on RSV/B-infected cells. We observed that RSV/A F with higher p27 levels could better sustain the pre-F conformation during the temperature stress challenge in both spRSV- and RSV-infected cell lines. Our findings suggest that despite F sequence similarity, p27 of RSV subtypes was cleaved with different efficiencies, which were also dependent on the cell lines used for infection. Importantly, the presence of p27 was associated with greater stability of the pre-F conformation, supporting the possibility that RSV has more than one mechanism for fusion to the host cell. IMPORTANCE RSV fusion protein (F) plays an important role in entry and viral fusion to the host cell. The F undergoes proteolytic cleavages releasing a 27-amino-acid peptide (p27) to become fully functional. The role of p27 in viral entry and the function of the partially cleaved F containing p27 has been overlooked. p27 is thought to destabilize the F trimers, and thus, there is need for a fully cleaved F. In this study, we detected p27 on purified RSV virions and on the surface of virus-infected HEp-2 and A549 cells for circulating RSV strains of both subtypes. Higher levels of partially cleaved F containing p27 better sustained the pre-F conformation during the temperature stress challenge. Our findings highlight that the cleavage efficiency of p27 is different between RSV subtypes and among cell lines and that the presence of p27 contributes to the stability of the pre-F conformation.

Keywords: F protein; RSV; RSV subtypes; cleavage; p27; peptide 27; prefusion conformation; respiratory syncytial virus.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, N.I.H., Extramural

MeSH terms

  • Antibodies, Neutralizing
  • Antibodies, Viral
  • Cell Line
  • Humans
  • Respiratory Syncytial Virus Infections*
  • Respiratory Syncytial Virus Vaccines*
  • Respiratory Syncytial Virus, Human*
  • Viral Fusion Proteins / metabolism

Substances

  • Antibodies, Neutralizing
  • Antibodies, Viral
  • Viral Fusion Proteins
  • Respiratory Syncytial Virus Vaccines