A comparison of past and present computational methods for shape analysis of double-shell x-ray radiographs

Rev Sci Instrum. 2023 May 1;94(5):053502. doi: 10.1063/5.0123931.

Abstract

Implosion symmetry is a key requirement in achieving a robust burning plasma in inertial confinement fusion experiments. In double-shell capsule implosions, we are interested in the shape of the inner shell as it pushes on the fuel. Shape analysis is a popular technique for studying said symmetry during implosion. Combinations of filtering and contour-finding algorithms are studied for their promise in reliably recovering Legendre shape coefficients from synthetic radiographs of double-shell capsules with applied levels of noise. A radial lineout max(slope) method when used on an image pre-filtered with non-local means and a variant of the marching squares algorithm are able to recover p0, p2, and p4 maxslope Legendre shape coefficients with mean pixel discrepancy errors of 2.81 and 3.06, respectively, for the noisy synthetic radiographs we consider. This improves upon prior radial lineout methods paired with Gaussian filtering, which we show to be unreliable and whose performance is dependent on input parameters that are difficult to estimate.