Deficiency of macrophage-derived Dnase1L3 causes lupus-like phenotypes in mice

bioRxiv [Preprint]. 2023 Apr 18:2023.04.17.537232. doi: 10.1101/2023.04.17.537232.

Abstract

Systemic Lupus Erythematosus (SLE) is a chronic autoimmune disease caused by environmental factors and loss of key proteins. One such protein is a serum endonuclease secreted by macrophages and dendritic cells, Dnase1L3. Loss of Dnase1L3 causes pediatric-onset lupus in humans is Dnase1L3. Reduction in Dnase1L3 activity occurs in adult-onset human SLE. However, the amount of Dnase1L3 necessary to prevent lupus onset, if the impact is continuous or requires a threshold, and which phenotypes are most impacted by Dnase1L3 remain unknown. To reduce Dnase1L3 protein levels, we developed a genetic mouse model with reduced Dnase1L3 activity by deleting Dnase1L3 from macrophages (cKO). Serum Dnase1L3 levels were reduced 67%, though Dnase1 activity remained constant. Sera were collected weekly from cKO and littermate controls until 50 weeks of age. Homogeneous and peripheral anti-nuclear antibodies were detected by immunofluorescence, consistent with anti-dsDNA antibodies. Total IgM, total IgG, and anti-dsDNA antibody levels increased in cKO mice with increasing age. In contrast to global Dnase1L3 -/- mice, anti-dsDNA antibodies were not elevated until 30 weeks of age. The cKO mice had minimal kidney pathology, except for deposition of immune complexes and C3. Based on these findings, we conclude that an intermediate reduction in serum Dnase1L3 causes mild lupus phenotypes. This suggest that macrophage-derived DnaselL3 is critical to limiting lupus.

Publication types

  • Preprint