A quinary WTaCrVHf nanocrystalline refractory high-entropy alloy withholding extreme irradiation environments

Nat Commun. 2023 May 2;14(1):2516. doi: 10.1038/s41467-023-38000-y.

Abstract

In the quest of new materials that can withstand severe irradiation and mechanical extremes for advanced applications (e.g. fission & fusion reactors, space applications, etc.), design, prediction and control of advanced materials beyond current material designs become paramount. Here, through a combined experimental and simulation methodology, we design a nanocrystalline refractory high entropy alloy (RHEA) system. Compositions assessed under extreme environments and in situ electron-microscopy reveal both high thermal stability and radiation resistance. We observe grain refinement under heavy ion irradiation and resistance to dual-beam irradiation and helium implantation in the form of low defect generation and evolution, as well as no detectable grain growth. The experimental and modeling results-showing a good agreement-can be applied to design and rapidly assess other alloys subjected to extreme environmental conditions.