Single-Piece Membrane Supercapacitor with Exceptional Areal/Volumetric Capacitance via Double-Face Print of Electrode/Electrolyte Active Ink

Small Methods. 2023 Jul;7(7):e2300178. doi: 10.1002/smtd.202300178. Epub 2023 May 2.

Abstract

Single-piece flexible supercapacitors (FSCs) have light and ultrathin superiorities, thereby having great potential in portable/wearable electronics. However, all the available single-piece FSCs are fabricated by in situ growth routes, which are incompatible with large-scale technology. This work designs a carboxymethyl cellulose/phytic acid/polyaniline ink, incorporating electrode with electrolyte active compositions. Based on the electrode/electrolyte active ink, a double-face print technique on mixed cellulose ester and nylon membranes to fabricate single-piece membrane-FSCs, where both sides of membranes can be utilized well, is proposed. Consequently, one FSC is measured to be only ≈0.785 cm2 in area, ≈0.021 g in weight, and ≈200 µm in thickness, while it has exceptional areal and volumetric capacitances up to 757 mF cm-2 and 37.8 F cm-3 , respectively, based on the entire device. It also exhibits high flexibility with a capacitance retention of 98% after 2000 bend cycles from 0° to 180°. The state-of-the-art FSCs are expected to have exciting prospects in portable/wearable electronics, smart reading, and flexible displays. The preparation strategy renders the massive production of large-area and mini-size arrayed FSCs, and also the "do-it-yourself" or homemade preparation, which adds more interest and designability for general users.

Keywords: CMC/PA/PANI ink; double-face print; flexible supercapacitors; light and ultrathin; single-piece configuration.