Knockdown of circ_CLIP2 regulates the proliferation, metastasis and apoptosis of glioma cells through miR-641/EPHA3/STAT3 axis

J Neurogenet. 2023 Sep;37(3):93-102. doi: 10.1080/01677063.2023.2199067. Epub 2023 Apr 27.

Abstract

A great amount of reaches have confirmed that circular RNAs (circRNAs) are novel regulators in glioma progression. Here, our work aimed to probe the specific role of circ_CLIP2 in glioma. The mRNA and protein expressions were analyzed by qRT-PCR and western blot, respectively. Cell viability, migration, invasion and apoptosis were examined by MTT assay, tranwell and flow cytometry assays, respectively. Moreover, the binding relationships between circ_CLIP2, microRNA (miR)-641 and erythropoietin-producing human hepatocellular (Eph)A3 were verified by dual luciferase reporter gene assay and/or RIP assay. The following data showed that circ_CLIP2 and EPHA3 were markedly increased in glioma tissues and cells, while miR-647 was downregulated. Gain- and loss-of-function experiments discovered that circ_CLIP2 knockdown remarkably inhibited cell proliferation, migration and invasion and promoted cell apoptosis of glioma cells, while these effects of circ_CLIP2 knockdown were abolished by miR-641 inhibition. Circ_CLIP2 was proved as a sponge of miR-641 to competitively upregulate EPHA3 expression. In addition, EPHA3 overexpression could abolish the inhibitory effects of miR-641 overexpression on the malignant behaviors of glioma cells by activating the signal transducer and activator of transcription 3 (STAT3). These findings elucidated that circ_CLIP2 knockdown suppressed glioma development by regulation of the miR-641/EP HA3/STAT3 axis, which provided a novel mechanism for understanding the pathogenesis of glioma.

Keywords: EPHA3; Glioma; STAT3; circ_CLIP2; miR-641.