Evaluation of oral and dermal health risk exposures of contaminants in groundwater resources for nine age groups in two densely populated districts, Nigeria

Heliyon. 2023 Apr 18;9(4):e15483. doi: 10.1016/j.heliyon.2023.e15483. eCollection 2023 Apr.

Abstract

Human health and the sustainability of the socioeconomic system are directly related to water quality. As anthropogenic activity becomes more intense, pollutants, particularly potentially harmful elements (PHEs), penetrate water systems and degrade water quality. The purpose of this study was to evaluate the safety of using groundwater for domestic and drinking purposes through oral and dermal exposure routes, as well as the potential health risks posed to humans in the Nnewi and Awka regions of Nigeria. The research involved the application of a combination of the National Sanitation Foundation Water Quality Index (NSFWQI), HERisk code, and hierarchical dendrograms. Additionally, we utilized the regulatory guidelines established by the World Health Organization and the Standard Organization of Nigeria to compare the elemental compositions of the samples. The physicochemical parameters and NSFWQI evaluation revealed that the majority of the samples were PHE-polluted. Based on the HERisk code, it was discovered that in both the Nnewi and Awka regions, risk levels are higher for people aged 1 to <11 and >65 than for people aged 16 to <65. Overall, it was shown that all age categories appeared to be more vulnerable to risks due to the consumption than absorption of PHEs, with Cd > Pb > Cu > Fe for Nnewi and Pb > Cd > Cu > Fe for water samples from Awka. Summarily, groups of middle age are less susceptible to possible health issues than children and elderly individuals. Hierarchical dendrograms and correlation analysis showed the spatio-temporal implications of the drinking groundwater quality and human health risks in the area. This research could help local government agencies make informed decisions on how to effectively safeguard the groundwater environment while also utilizing the groundwater resources sustainably.

Keywords: Carcinogenic risk; Groundwater quality assessment; HERisk code; Hierarchical dendrogram; Non-carcinogenic risk; Potentially harmful elements.