The virome of the last eukaryotic common ancestor and eukaryogenesis

Nat Microbiol. 2023 Jun;8(6):1008-1017. doi: 10.1038/s41564-023-01378-y. Epub 2023 May 1.

Abstract

All extant eukaryotes descend from the last eukaryotic common ancestor (LECA), which is thought to have featured complex cellular organization. To gain insight into LECA biology and eukaryogenesis-the origin of the eukaryotic cell, which remains poorly understood-we reconstructed the LECA virus repertoire. We compiled an inventory of eukaryotic hosts of all major virus taxa and reconstructed the LECA virome by inferring the origins of these groups of viruses. The origin of the LECA virome can be traced back to a small set of bacterial-not archaeal-viruses. This provenance of the LECA virome is probably due to the bacterial origin of eukaryotic membranes, which is most compatible with two endosymbiosis events in a syntrophic model of eukaryogenesis. In the first endosymbiosis, a bacterial host engulfed an Asgard archaeon, preventing archaeal viruses from entry owing to a lack of archaeal virus receptors on the external membranes.

Publication types

  • Review
  • Research Support, Non-U.S. Gov't
  • Research Support, N.I.H., Extramural
  • Research Support, N.I.H., Intramural

MeSH terms

  • Archaea / genetics
  • Bacteria / genetics
  • Eukaryota*
  • Eukaryotic Cells
  • Phylogeny
  • Virome
  • Viruses* / genetics