Cholesterol Biases the Conformational Landscape of the Chemokine Receptor CCR3: A MAS SSNMR-Filtered Molecular Dynamics Study

J Chem Inf Model. 2023 May 22;63(10):3068-3085. doi: 10.1021/acs.jcim.2c01546. Epub 2023 May 1.

Abstract

Cholesterol directs the pathway of ligand-induced G protein-coupled receptor (GPCR) signal transduction. The GPCR C-C motif chemokine receptor 3 (CCR3) is the principal chemotactic receptor for eosinophils, with roles in cancer metastasis and autoinflammatory conditions. Recently, we discovered a direct correlation between bilayer cholesterol and increased agonist-triggered CCR3 signal transduction. However, the allosteric molecular mechanism escalating ligand affinity and G protein coupling is unknown. To study cholesterol-guided CCR3 conformational selection, we implement comparative, objective measurement of protein architectures by scoring shifts (COMPASS) to grade model structures from molecular dynamics simulations. In this workflow, we scored predicted chemical shifts against 2-dimensional solid-state NMR 13C-13C correlation spectra of U-15N,13C-CCR3 samples prepared with and without cholesterol. Our analysis of trajectory model structures uncovers that cholesterol induces site-specific conformational restraint of extracellular loop (ECL) 2 and conserved motion in transmembrane helices and ECL3 not observed in simulations of bilayers with only phosphatidylcholine lipids. PyLipID analysis implicates direct cholesterol agency in CCR3 conformational selection and dynamics. Residue-residue contact scoring shows that cholesterol biases the conformational selection of the orthosteric pocket involving Y411.39, Y1133.32, and E2877.39. Lastly, we observe contact remodeling in activation pathway residues centered on the initial transmission switch, Na+ pocket, and R3.50 in the DRY motif. Our observations have unique implications for understanding of CCR3 ligand recognition and specificity and provide mechanistic insight into how cholesterol functions as an allosteric regulator of CCR3 signal transduction.

Publication types

  • Research Support, N.I.H., Extramural

MeSH terms

  • Bias
  • Chemokine CCL11
  • Ligands
  • Molecular Dynamics Simulation*
  • Receptors, Chemokine* / chemistry

Substances

  • Receptors, Chemokine
  • Chemokine CCL11
  • Ligands