Analysis of a neutron-induced conversion electron spectrum of gadolinium

Appl Radiat Isot. 2023 Jul:197:110828. doi: 10.1016/j.apradiso.2023.110828. Epub 2023 Apr 20.

Abstract

A 100-nm-thick gadolinium layer deposited on a pixelated silicon sensor was activated in a neutron field to measure the internal conversion electron (ICE) spectrum generated by neutron capture products of 155Gd and 157Gd. The experiment was performed at the ISIS neutron and muon facility, using a bespoke version of the HEXITEC spectroscopic imaging camera. Signals originating from internal conversion electrons, Auger electrons, x rays and gamma rays up to 150 keV were identified. The ICE spectrum has an energy resolution of 1.8-1.9 keV at 72 keV and shows peaks from the K, L, M, N+ ICEs of the 79.51 keV and 88.967 keV 2+-0+ gamma transitions from the first excited states in 158Gd and 156Gd, respectively, as well as the K ICEs of the 4+-2+ transitions at 181.931 keV and 199.213 keV from the respective second excited states. Spectrum analysis was performed using a convolution of a Gaussian with exponential functions at the low and high energy side as the peak shaping function. Relative ICE intensities were derived from the fitted peak areas and compared with internal conversion coefficient (ICC) values calculated from the BrIcc database. Relative to the dominant L shell contribution, the K ICE intensity conforms to BrIcc and the M, N, O+ ICE intensities are somewhat higher than expected.

Keywords: Electron emission probability; Gadolinium; Internal conversion; Neutron capture; Neutron imaging.