Application of different Trombe wall solutions on the reduction of energy load and sustainable development in an eco-resort residential building in Binalood region with a cold and dry climate

Environ Sci Pollut Res Int. 2023 Jun;30(26):68417-68434. doi: 10.1007/s11356-023-27039-5. Epub 2023 May 1.

Abstract

Trombe wall is a passive strategy that reduces the energy consumption in buildings and helps for sustainable development of the residential sector. Applying these walls is very important in areas that need heating load in winter. This study evaluates a set of Trombe walls for the energy management of a residential building under real conditions in Binalood region with a cold and dry climate. In order to study the potentials of the Trombe wall, four different designs, including cubic Trombe wall with rectangular structure and three-sided glass, Trombe wall with trapezoidal structure and three-sided glass, Trombe wall with trapezoidal structure and four-sided glass, and Trombe wall with thicker storage wall, trapezoidal structure, and three-sided glass, for Trombe wall are considered. Trombe walls of all four suggested designs are exposed to outdoor conditions and installed at 17 places on the southern walls of the residential building. The results show that the most optimal design, i.e., Trombe wall with thicker storage wall, trapezoidal structure, and three-sided glass, leads to the greatest decrease (1637 kWh) in heating load in January. In addition, this design of the Trombe wall has the greatest effect in increasing the indoor air temperature among other Trombe walls investigated in this study. The Trombe wall with thicker storage wall, trapezoidal structure, and three-sided glass with a storage wall thickness of 40 cm is able to reduce the heating load of the building by 5.59 MWh in 5 months. This plan reduces the energy demand of the building by 8% more than the conventional structure of Trombe wall.

Keywords: Cold and dry climate; Energy consumption; Heating load demand; Natural ventilation; Trombe wall; Zero energy building.

MeSH terms

  • Climate*
  • Cold Temperature
  • Seasons
  • Sustainable Development*
  • Temperature