Usual intake of one-carbon metabolism nutrients in a young adult population aged 19-30 years: a cross-sectional study

J Nutr Sci. 2023 Apr 24:12:e51. doi: 10.1017/jns.2023.38. eCollection 2023.

Abstract

One-carbon nutrients play an important role in epigenetic mechanisms and cellular methylation reactions. Inadequate intake of these nutrients is linked to metabolic perturbations, yet the current intake levels of these nutrients have rarely been studied in Asia. This cross-sectional study surveyed the usual dietary intake of one-carbon nutrients (folate, choline and vitamins B2, B6 and B12) among Thai university students aged 19-30 years (n 246). Socioeconomic background, health information, anthropometric data and 24-h dietary recall data were collected. The long-term usual intake was estimated using the multiple-source method. The average usual intake levels for men and women were (mean ± sd) 1⋅85 ± 0⋅95 and 2⋅42 ± 8⋅7 mg/d of vitamin B2, 1⋅96 ± 1⋅0 and 2⋅49 ± 8⋅7 mg/d of vitamin B6, 6⋅20 ± 9⋅5 and 6⋅28 ± 12 μg/d of vitamin B12, 195 ± 154 and 155 ± 101 μg dietary folate equivalent/d of folate, 418 ± 191 and 337 ± 164 mg/d of choline, respectively. Effect modification by sex was observed for vitamin B2 (P-interaction = 0⋅002) and choline (P-interaction = 0⋅02), where every 1 mg increase in vitamin B2 and 100 mg increase in choline intake were associated with a 2⋅07 (P = 0⋅01) and 0⋅81 kg/m2 (P = 0⋅04) lower BMI, respectively, in men. The study results suggest that Thai young adults meet the recommended levels for vitamins B2, B6 and B12. The majority of participants had inadequate folate intake and did not achieve recommended intake levels for choline. The study was approved by the Ethics Committee at the Faculty of Medicine, Chiang Mai University. This trial was registered at www.thaiclinicaltrials.gov (TCTR20210420007).

Keywords: Adequate intake; Adult; Asian; Betaine; Dietary reference intake; Estimated average requirement.

Publication types

  • Clinical Trial
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Carbon / metabolism
  • Choline
  • Cross-Sectional Studies
  • Female
  • Folic Acid*
  • Humans
  • Male
  • Nutrients*
  • Riboflavin
  • Vitamins
  • Young Adult

Substances

  • Carbon
  • Choline
  • Folic Acid
  • Riboflavin
  • Vitamins