Sensitivity to syllable stress regularities in externally but not self-triggered speech in Dutch

Eur J Neurosci. 2023 Jul;58(1):2297-2314. doi: 10.1111/ejn.16003. Epub 2023 May 10.

Abstract

Several theories of predictive processing propose reduced sensory and neural responses to anticipated events. Support comes from magnetoencephalography/electroencephalography (M/EEG) studies, showing reduced auditory N1 and P2 responses to self-generated compared to externally generated events, or when the timing and form of stimuli are more predictable. The current study examined the sensitivity of N1 and P2 responses to statistical speech regularities. We employed a motor-to-auditory paradigm comparing event-related potential (ERP) responses to externally and self-triggered pseudowords. Participants were presented with a cue indicating which button to press (motor-auditory condition) or which pseudoword would be presented (auditory-only condition). Stimuli consisted of the participant's own voice uttering pseudowords that varied in phonotactic probability and syllable stress. We expected to see N1 and P2 suppression for self-triggered stimuli, with greater suppression effects for more predictable features such as high phonotactic probability and first-syllable stress in pseudowords. In a temporal principal component analysis (PCA), we observed an interaction between syllable stress and condition for the N1, where second-syllable stress items elicited a larger N1 than first-syllable stress items, but only for externally generated stimuli. We further observed an effect of syllable stress on the P2, where first-syllable stress items elicited a larger P2. Strikingly, we did not observe motor-induced suppression for self-triggered stimuli for either the N1 or P2 component, likely due to the temporal predictability of the stimulus onset in both conditions. Taking into account previous findings, the current results suggest that sensitivity to syllable stress regularities depends on task demands.

Keywords: N1; P2; forward model; lexical stress; motor-induced suppression; phonotactic probability.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Acoustic Stimulation / methods
  • Electroencephalography
  • Evoked Potentials, Auditory* / physiology
  • Humans
  • Speech*