Superatom-in-Superatom Nanoclusters: Synthesis, Structure, and Photoluminescence

Angew Chem Int Ed Engl. 2023 Aug 14;62(33):e202302591. doi: 10.1002/anie.202302591. Epub 2023 May 17.

Abstract

We report a new strategy in which a thiolate-protected Ag25 nanocluster can be doped with open d-shell group 8 (Ru, Os) and 9 (Ir) metals by forming metal hydride (RuH2 , OsH2 , IrH) superatoms with a closed d-shell. Structural analyses using various experimental and theoretical methods revealed that the Ag25 nanoclusters were co-doped with the open d-shell metal and hydride species to produce superatom-in-superatom nanoclusters, establishing a novel superatom doping phenomenon for open d-shell metals. The synthesized superatom-in-superatom nanoclusters exhibited dopant-dependent photoluminescence (PL) properties. Comparative PL lifetime studies of the Ag25 nanoclusters doped with 8-10 group metals revealed that both radiative and nonradiative processes were significantly dependent on the dopant. The former is strongly correlated with the electron affinity of the metal dopant, whereas the latter is governed predominantly by the kernel structure changed upon the doping of the metal hydride(s).

Keywords: Doping; Metal Hydride; Open d-Shell; Silver Nanocluster; Superatom.