Molecular Engineering of Self-Immolative Bioresponsive MR Probes

J Am Chem Soc. 2023 May 10;145(18):10045-10050. doi: 10.1021/jacs.2c13672. Epub 2023 Apr 28.

Abstract

Real-time detection of bio-event in whole animals provides essential information for understanding biological and therapeutic processes. Magnetic resonance (MR) imaging represents a non-invasive approach to generating three-dimensional anatomic images with high spatial-temporal resolution and unlimited depth penetration. We have developed several self-immolative enzyme-activatable agents that provide excellent in vivo contrast and function as gene expression reporters. Here, we describe a vast improvement in image contrast over our previous generations of these bioresponsive agents based on a new pyridyl-carbamate Gd(III) complex. The pyridyl-carbamate-based agent has a very low MR relaxivity in the "off-state" (r1 = 1.8 mM-1 s-1 at 1.41 T). However, upon enzymatic processing, it generates a significantly higher relaxivity with a Δr1 = 106% versus Δr1 ∼ 20% reported previously. Single X-ray crystal and nuclear magnetic relaxation dispersion analyses offer mechanistic insights regarding MR signal enhancement at the molecular scale. This work demonstrates a pyridyl-carbamate-based self-immolative molecular platform for the construction of enzymatic bio-responsive MR agents, which can be adapted to a wide range of other targets for exploring stimuli-responsive materials and biomedical applications.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Animals
  • Contrast Media / chemistry
  • Magnetic Resonance Imaging* / methods
  • Magnetics*

Substances

  • Contrast Media