Topological Atomic Spin Wave Lattices by Dissipative Couplings

Phys Rev Lett. 2023 Apr 14;130(15):153602. doi: 10.1103/PhysRevLett.130.153602.

Abstract

Recent experimental advances in creating dissipative couplings provide a new route for engineering exotic lattice systems and exploring topological dissipation. Using the spatial lattice of atomic spin waves in a vacuum vapor cell, where purely dissipative couplings arise from diffusion of atoms, we experimentally realize a dissipative version of the Su-Schrieffer-Heeger (SSH) model. We construct the dissipation spectrum of the topological or trivial lattices via electromagnetically induced-transparency spectroscopy. The topological dissipation spectrum is found to exhibit edge modes within a dissipative gap. We validate chiral symmetry of the dissipative SSH couplings and also probe topological features of the generalized dissipative SSH model. This work paves the way for realizing non-Hermitian topological quantum optics via dissipative couplings.