Size Growth of Au4Cu4: From Increased Nucleation to Surface Capping

ACS Nano. 2023 May 9;17(9):8613-8621. doi: 10.1021/acsnano.3c01238. Epub 2023 Apr 28.

Abstract

The size conversion of atomically precise metal nanoclusters is fundamental for elucidating structure-property correlations. In this study, copper salt (CuCl)-induced size growth from [Au4Cu4(Dppm)2(SAdm)5]+ (abbreviated as [Au4Cu4S5]+) to [Au4Cu6(Dppm)2(SAdm)4Cl3]+ (abbreviated as [Au4Cu6S4Cl3]+) (SAdmH = 1-adamantane mercaptan, Dppm = bis-(diphenylphosphino)methane) was investigated via experiments and density functional theory calculations. The [Au4Cu4S5]+ adopts a defective pentagonal bipyramid core structure with surface cavities, which could be easily filled with the sterically less hindered CuCl and CuSCy (i.e., core growth) (HSCy = cyclohexanethiol) but not the bulky CuSAdm. As long as the Au4Cu5 framework is formed, ligand exchange or size growth occurs easily. However, owing to the compact pentagonal bipyramid core structure, the latter growth mode occurs only for the surface-capped [Au4Cu6(Dppm)2(SAdm)4Cl3]+ structure (i.e., surface-capped size growth). A preliminary mechanistic study with density functional theory (DFT) calculations indicated that the overall conversion occurred via CuCl addition, core tautomerization, Cl migration, the second [CuCl] addition, and [CuCl]-[CuSR] exchange steps. And the [Au4Cu6(Dppm)2(SAdm)4Cl3]+ alloy nanocluster exhibits aggregation-induced emission (AIE) with an absolute luminescence quantum yield of 18.01% in the solid state. This work sheds light on the structural transformation of Au-Cu alloy nanoclusters induced by Cu(I) and contributes to the knowledge base of metal-ion-induced size conversion of metal nanoclusters.

Keywords: Au−Cu; alloy nanocluster; density functional theory calculation; mechanism; size growth.