Antibacterial Properties and Computational Insights of Potent Novel Linezolid-Based Oxazolidinones

Pharmaceuticals (Basel). 2023 Mar 30;16(4):516. doi: 10.3390/ph16040516.

Abstract

The mounting evidence of bacterial resistance against commonly prescribed antibiotics warrants the development of new antibacterial drugs on an urgent basis. Linezolid, an oxazolidinone antibiotic, is a lead molecule in designing new oxazolidinones as antibacterial agents. In this study, we report the antibacterial potential of the novel oxazolidinone-sulphonamide/amide conjugates that were recently reported by our research group. The antibacterial assays showed that, from the series, oxazolidinones 2 and 3a exhibited excellent potency (MIC of 1.17 μg/mL) against B. subtilis and P. aeruginosa strains, along with good antibiofilm activity. Docking studies revealed higher binding affinities of oxazolidinones 2 and 3a compared to linezolid, which were further validated by molecular dynamics simulations. In addition to this, other computational studies, one-descriptor (log P) analysis, ADME-T and drug likeness studies demonstrated the potential of these novel linezolid-based oxazolidinones to be taken forward for further studies.

Keywords: ADME properties; antibacterial; linezolid; molecular dynamics; molecular modeling; oxazolidinone.