Study on Concave Direction Impact Performance of Similar Concave Hexagon Honeycomb Structure

Materials (Basel). 2023 Apr 21;16(8):3262. doi: 10.3390/ma16083262.

Abstract

Based on the traditional concave hexagonal honeycomb structure, three kinds of concave hexagonal honeycomb structures were compared. The relative densities of traditional concave hexagonal honeycomb structures and three other classes of concave hexagonal honeycomb structures were derived using the geometric structure. The impact critical velocity of the structures was derived by using the 1-D impact theory. The in-plane impact characteristics and deformation modes of three kinds of similar concave hexagonal honeycomb structures in the concave direction at low, medium, and high velocity were analyzed using the finite element software ABAQUS. The results showed that the honeycomb structure of the cells of the three types undergoes two stages: concave hexagons and parallel quadrilaterals, at low velocity. For this reason, there are two stress platforms in the process of strain. With the increase in the velocity, the joints and middle of some cells form a glue-linked structure due to inertia. No excessive parallelogram structure appears, resulting in the blurring or even disappearance of the second stress platform. Finally, effects of different structural parameters on the plateau stress and energy absorption of structures similar to concave hexagons were obtained during low impact. The results provide a powerful reference for the negative Poisson's ratio honeycomb structure under multi-directional impact.

Keywords: concave direction impact; honeycomb structure; in-plane impact; similar concave hexagon; specific energy absorption; stress plateau.