Carbon Biogeochemistry of the Estuaries Adjoining the Indian Sundarbans Mangrove Ecosystem: A Review

Life (Basel). 2023 Mar 23;13(4):863. doi: 10.3390/life13040863.

Abstract

The present study reviewed the carbon-biogeochemistry-related observations concerning CO2 and CH4 dynamics in the estuaries adjoining the Indian Sundarbans mangrove ecosystem. The review focused on the partial pressure of CO2 and CH4 [pCO2(water) and pCH4(water)] and air-water CO2 and CH4 fluxes and their physical, biogeochemical, and hydrological drivers. The riverine-freshwater-rich Hooghly estuary has always exhibited higher CO2 emissions than the marine-water-dominated Sundarbans estuaries. The mangrove sediment porewater and recirculated groundwater were rich in pCO2(water) and pCH4(water), enhancing their load in the adjacent estuaries. Freshwater-seawater admixing, photosynthetically active radiation, primary productivity, and porewater/groundwater input were the principal factors that regulated pCO2(water) and pCH4(water) and their fluxes. Higher chlorophyll-a concentrations, indicating higher primary production, led to the furnishing of more organic substrates that underwent anaerobic degradation to produce CH4 in the water column. The northern Bay of Bengal seawater had a high carbonate buffering capacity that reduced the pCO2(water) and water-to-air CO2 fluxes in the Sundarbans estuaries. Several authors traced the degradation of organic matter to DIC, mainly following the denitrification pathway (and pathways between aerobic respiration and carbonate dissolution). Overall, this review collated the significant findings on the carbon biogeochemistry of Sundarbans estuaries and discussed the areas that require attention in the future.

Keywords: air–water CH4 flux; air–water CO2 flux; dissolved inorganic carbon; dissolved organic carbon; partial pressure of CH4; partial pressure of CO2; particulate organic carbon; salinity; total alkalinity.

Publication types

  • Review