Towards Green Synthesis of Fluorescent Metal Nanoclusters

J Fluoresc. 2023 Nov;33(6):2161-2180. doi: 10.1007/s10895-023-03229-9. Epub 2023 Apr 27.

Abstract

In the modern development of nanoscience and nanotechnology, metal nanoclusters have emerged as a foremost category of nanomaterials exhibiting remarkable biocompatibility and photo-stability having dramatically distinctive optical, electronic, and chemical properties. This review focuses on synthesizing fluorescent metal nanoclusters in a greener way to make them suitable for biological imaging and drug delivery application. The green methodology is the desired route for sustainable chemical production and should be utilized for any form of chemical synthesis including nanomaterials. It aims to eliminate harmful waste, uses non-toxic solvents, and employs energy-efficient processes for the synthesis. This article provides an overview of conventional synthesis methods, including stabilizing nanoclusters by small organic molecules in organic solvents. Then we focus on the improvement of properties, applications of green synthesized metal nanoclusters, challenges involved, and further advancement required in the direction of green synthesis of MNCs. There are plenty of problems for scientists to solve to make nanoclusters suitable for bio-applications, chemical sensing, and catalysis synthesized by green methods. Using bio-compatible and electron-rich ligands, understanding ligand-metal interfacial interactions, employing more energy-efficient processes, and utilizing bio-inspired templates for synthesis are some immediate problems worth solving in this field that requires continued efforts and interdisciplinary knowledge and collaboration.

Keywords: Bio-compatibility; Green synthesis; Metal nanoclusters; Photoluminescence; Quantum yield.

Publication types

  • Review