Protective effect of Guanxin Danshen formula on myocardial ischemiareperfusion injury in rats

Acta Cir Bras. 2023 Apr 21:38:e380123. doi: 10.1590/acb380123. eCollection 2023.

Abstract

Purpose: Myocardial ischemia/reperfusion injury (MIRI) leads to myocardial tissue necrosis, which will increase the size of myocardial infarction. The study examined the protective effect and mechanism of the Guanxin Danshen formula (GXDSF) on MIRI in rats.

Methods: MIRI model was performed in rats; rat H9C2 cardiomyocytes were hypoxia-reoxygenated to establish a cell injury model.

Results: The GXDSF significantly reduced myocardial ischemia area, reduced myocardial structural injury, decreased the levels of interleukin (IL-1β, IL-6) in serum, decreased the activity of myocardial enzymes, increased the activity of superoxide dismutase (SOD), and reduced glutathione in rats with MIRI. The GXDSF can reduce the expression of nucleotide- binding oligomerization domain, leucine-rich repeat and pyrin domain containing nod-like receptor family protein 3 (NLRP3), IL-1β, caspase-1, and gasdermin D (GSDMD) in myocardial tissue cells. Salvianolic acid B and notoginsenoside R1 protected H9C2 cardiomyocytes from hypoxia and reoxygenation injury and reduced the levels of tumor necrosis factor α (TNF-α) and IL-6 in the cell supernatant, decreasing the NLRP3, IL-18, IL-1β, caspase-1, and GSDMD expression in H9C2 cardiomyocytes. GXDSF can reduce the myocardial infarction area and alleviate the damage to myocardial structure in rats with MIRI, which may be related to the regulation of the NLRP3.

Conclusions: GXDSF reduces MIRI in rat myocardial infarction injury, improves structural damage in myocardial ischemia injury, and reduces myocardial tissue inflammation and oxidative stress by lowering inflammatory factors and controlling focal cell death signaling pathways.

MeSH terms

  • Animals
  • Caspase 1
  • Hypoxia / metabolism
  • Interleukin-6 / metabolism
  • Myocardial Infarction* / drug therapy
  • Myocardial Infarction* / metabolism
  • Myocardial Infarction* / prevention & control
  • Myocardial Ischemia*
  • Myocardial Reperfusion Injury* / drug therapy
  • Myocardial Reperfusion Injury* / metabolism
  • Myocardial Reperfusion Injury* / prevention & control
  • Myocytes, Cardiac / pathology
  • NLR Family, Pyrin Domain-Containing 3 Protein / metabolism
  • Rats
  • Rats, Sprague-Dawley
  • Salvia miltiorrhiza* / metabolism

Substances

  • NLR Family, Pyrin Domain-Containing 3 Protein
  • Interleukin-6
  • Caspase 1