Trace Ionic Liquid-Assisted Orientational Growth of Cu2 O (110) Facets Promote CO2 Electroreduction to C2 Products

ChemSusChem. 2023 Sep 8;16(17):e202300418. doi: 10.1002/cssc.202300418. Epub 2023 Jul 10.

Abstract

Cu2 O has great advantages for CO2 electroreduction to C2 products, of which the activity and selectivity are closely related to its crystal facets. In this work, density functional theory calculation indicated that the (110) facets of Cu2 O had a lower energy barrier for the C-C coupling compared to the (100) and (111) facets. Therefore, Cu2 O(110) facets were successfully synthesized with the assistance of trace amounts of the ionic liquid 1-butyl-3-methylimidazolium ([Bmim]BF4 ) by a sample wet-chemical method. A high faradaic efficiency of 71.1 % and a large current density of 265.1 mA cm-2 toward C2 H4 and C2 H5 OH were achieved at -1.1 V (vs. reversible hydrogen electrode) in a flow cell. The in situ and electrochemical analysis indicated that it possessed the synergy effects of strong adsorption of *CO2 and *CO, large active area, and excellent conductivity. This study provided a new way to enhance the C2 selectivity of CO2 electroreduction on Cu2 O by crystal structure engineering.

Keywords: CO2 electroreduction; Cu2O; crystal structure engineering; facet effect; ionic liquids.