A High-Energy Asymmetric Supercapacitor Based on Tomato-Leaf-Derived Hierarchical Porous Activated Carbon and Electrochemically Deposited Polyaniline Electrodes for Battery-Free Heart-Pulse-Rate Monitoring

Small. 2023 Aug;19(33):e2300258. doi: 10.1002/smll.202300258. Epub 2023 Apr 24.

Abstract

A simple and scalable method to fabricate a novel high-energy asymmetric supercapacitor using tomato-leaf-derived hierarchical porous activated carbon (TAC) and electrochemically deposited polyaniline (PANI) for a battery-free heart-pulse-rate monitor is reported. In this study, TAC is prepared by simple pyrolysis, exhibiting nanosheet-type morphology and a high specific surface area of ≈1440 m2 g-1 , and PANI is electrochemically deposited onto carbon cloth. The TAC- and PANI- based asymmetric supercapacitor demonstrates an electrochemical performance superior to that of symmetric supercapacitors, delivering a high specific capacitance of 248 mF cm-2 at a current density of 1.0 mA cm-2 . The developed asymmetric supercapacitor shows a high energy density of 270 µWh cm-2 at a power density of 1400 µW cm-2 , as well as an excellent cyclic stability of ≈95% capacitance retention after 10 000 charging-discharging cycles while maintaining ≈98% Coulombic efficiency. Impressively, the series-connected asymmetric supercapacitors can operate a battery-free heart-pulse-rate monitor extremely efficiently upon solar-panel charging under regular laboratory illumination.

Keywords: activated carbon; asymmetric supercapacitors; ionic liquid electrolytes; large potential windows; polyaniline.