Computational capability of ecological dynamics

R Soc Open Sci. 2023 Apr 19;10(4):221614. doi: 10.1098/rsos.221614. eCollection 2023 Apr.

Abstract

Ecological dynamics is driven by complex ecological networks. Computational capabilities of artificial networks have been exploited for machine learning purposes, yet whether an ecological network possesses a computational capability and whether/how we can use it remain unclear. Here, we developed two new computational/empirical frameworks based on reservoir computing and show that ecological dynamics can be used as a computational resource. In silico ecological reservoir computing (ERC) reconstructs ecological dynamics from empirical time series and uses simulated system responses for information processing, which can predict near future of chaotic dynamics and emulate nonlinear dynamics. The real-time ERC uses real population dynamics of a unicellular organism, Tetrahymena thermophila. The temperature of the medium is an input signal and population dynamics is used as a computational resource. Intriguingly, the real-time ecological reservoir has necessary conditions for computing (e.g. synchronized dynamics in response to the same input sequences) and can make near-future predictions of empirical time series, showing the first empirical evidence that population-level phenomenon is capable of real-time computations. Our finding that ecological dynamics possess computational capability poses new research questions for computational science and ecology: how can we efficiently use it and how is it actually used, evolved and maintained in an ecosystem?

Keywords: computational capability; ecological dynamics; ecological networks; machine learning; neural network; reservoir computing.

Associated data

  • figshare/10.6084/m9.figshare.c.6566592