Theoretical and experimental studies on mechanochromic triphenylamine based fluorescent "ON-OFF-ON" sensor for sequential detection of Fe3+ and deferasirox

Spectrochim Acta A Mol Biomol Spectrosc. 2023 Sep 5:297:122745. doi: 10.1016/j.saa.2023.122745. Epub 2023 Apr 15.

Abstract

A novel triphenylamine (TPA) based sensor TTU was rationally designed and synthesized that exhibited reversible mechanochromic and aggregation induced emission enhancement (AIEE) properties. The AIEE active sensor was employed for fluorometric detection of Fe3+ in aqueous medium, with distinguished selectivity. The sensor showed a highly selective quenching response towards Fe3+ that is ascribed to complex formation with paramagnetic Fe3+. Subsequently, TTU-Fe3+ complex acted as a fluorescence sensor for the detection of deferasirox (DFX). The subsequent addition of DFX to TTU-Fe3+ complex led to the recovery of fluorescence emission intensity of sensor TTU that was attributed to the displacement of Fe3+ by DFX and release of sensor TTU. The proposed sensing mechanisms for Fe3+ and DFX was confirmed through 1H NMR titration experiment and DFT calculations. Frontier molecular orbitals (FMO), density of states (DOS), natural bond orbital (NBO), non-covalent interaction (NCI) and electron density difference (EDD) analysis were performed using DFT calculations to support the experimental results. Moreover, sensor TTU displayed colorimetric detection of Fe3+. Further, the sensor was employed for the detection of Fe3+ and DFX in real water samples. Finally, logic gate was fabricated by using sequential detection strategy.

Keywords: DFT studies; Logic gate; Mechanochromism; Sequential detection of Fe(3+) and deferasirox.