The effect of grassland type and proximity to the city center on urban soil and vegetation coverage

Environ Monit Assess. 2023 Apr 20;195(5):599. doi: 10.1007/s10661-023-11210-z.

Abstract

Urban soils with associated vegetation are important components of urban ecosystems, providing multiple regulating and supporting ecosystem services. This study aimed to analyze the differences in the soil chemistry and vegetation of urban grasslands considering urbanization gradient and urban grassland type (UGT). We hypothesized that the chemical properties of soil, such as metal content, as well as vegetation traits, differ according to grassland type (lawns, grasslands in parks, grasslands on river embankments, and roadsides) and the location of grassland patches (city center versus peripheries). Our samples included 94 UGT patches which each patch represented by four square sampling plots sized 1 m2. The results showed high differentiation of measured traits unrelated to UGT and location. The exception was K content, with a relatively high concentration in lawns, and some metals (Cd, Cu, Pb, Zn), with higher concentrations in the city center than in the peripheries. We found two grassland patches located in the city center where the concentrations of Pb, Zn, and Cu exceeded the level authorized by Polish standards. In the case of vegetation traits, the variability was not structured considering the UGT and location of the patches, except for bare soil cover, which was higher in lawns in the city center compared to embankments in the peripheries. We observed correlations between vegetation traits and soil chemical properties. The vascular plant species richness decreased when N, P, and C content, along with an increase in grass cover and a decrease in herbs.

Keywords: Ecosystem services; Ecotoxicity; Soil chemical properties; Urban grasslands.

MeSH terms

  • Ecosystem*
  • Environmental Monitoring / methods
  • Grassland*
  • Lead
  • Soil / chemistry

Substances

  • Soil
  • Lead