Application of biomaterials in treating early osteonecrosis of the femoral head: Research progress and future perspectives

Acta Biomater. 2023 Jul 1:164:15-73. doi: 10.1016/j.actbio.2023.04.005. Epub 2023 Apr 18.

Abstract

Osteonecrosis of the femoral head (ONFH), a progressive pathological process of femoral head ischemia and osteocyte necrosis, is a refractory orthopedic disease caused by multiple etiologies and there is no complete cure at present. With the extension of ONFH duration, osteocyte apoptosis and trabecular bone loss can decrease the load-bearing capacity of the femoral head, which leads to the collapse of the articular cartilage and subchondral bone. Therefore, an urgent clinical need exists to develop effective treatment strategies of early-stage ONFH for maintaining the hip joint function and preventing femoral head collapse. In recent years, extensive attention has been paid to the application of diverse biomaterials in treating early ONFH for sustaining the normal morphology and function of the autologous femoral head, and slowing disease progression. Herein, we review the research progress of bone grafts, metallic materials, bioceramics, bioglasses and polymer materials for early ONFH treatment, and discuss the biological mechanisms of bone repair and regeneration in the femoral-head necrotic area. We propose suggestions for future research directions, from a special perspective of improving the local microenvironment in femoral head by facilitating vessel-associated osteoclasts (VAOs) generation and coupling of bone-specific angiogenesis and osteogenesis, as well as inhibiting bone-associated osteoclasts (BAOs) and BAO-mediated bone resorption. This review can provide ideas for the research, development, and clinical application of biomaterials for treating early ONFH. STATEMENT OF SIGNIFICANCE: We believe that at least three aspects of this manuscript make it interesting to readers of the Acta Biomaterialia. First, we briefly summarize the incidence, pathogenesis, risk factors, classification criteria and treatment of early osteonecrosis of the femoral head (ONFH). Second, we review the research progress in biomaterials for early ONFH treatment and the biological mechanisms of bone repair and regeneration in femoral-head necrotic area. Third, we propose future research progress on improving the local microenvironment in femoral head by facilitating vessel-associated osteoclasts generation and coupling of bone-specific angiogenesis and osteogenesis, as well as inhibiting bone-associated osteoclasts and bone resorption. We hope this review can provide ideas for the research, development, and clinical application of biomaterials for treating early ONFH.

Keywords: Angiogenesis; Biomaterials; Bone resorption; Early osteonecrosis of the femoral head; Osteogenesis.

Publication types

  • Review
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Biocompatible Materials / pharmacology
  • Biocompatible Materials / therapeutic use
  • Bone Resorption* / pathology
  • Femur Head / pathology
  • Femur Head Necrosis* / pathology
  • Femur Head Necrosis* / therapy
  • Hip Joint
  • Humans
  • Osteonecrosis* / pathology

Substances

  • Biocompatible Materials