Optimization of hydrolysis conditions of crop straw and its effect in Chlorella sorokiniana culture

Ying Yong Sheng Tai Xue Bao. 2023 Apr;34(4):1123-1129. doi: 10.13287/j.1001-9332.202304.029.

Abstract

Taking straws of corn, wheat, and millet as raw materials, we pretreated them with alkaline hydrogen peroxide, and then hydrolyzed by cellulase and xylanase. We selected the total sugar content in the hydrolysate as the indicator to evaluate the hydrolysis of the straws from three crop species, and further optimized the conditions. Then, the hydrolysates of three types of crop straws were used as carbon source for Chlorella sorokiniana culture to assess their effects on microalgal cultivation. The results showed that the optimal hydrolysis conditions for the three crop straws were identified as solid-liquid ratio of 1:15, temperature of 30 ℃, and treatment time of 12 h. Under such optimal condition, the total sugar contents increased up to 1.677, 1.412, and 1.211 g·L-1 in the corn, millet and wheat straw hydrolysate, respectively. The hydrolysates from the three crop straw could significantly increase both algal biomass and lipid content of C. sorokiniana. Corn straw hydrolysate had the best effect, with high levels of algal biomass (1.801 g·L-1) and lipid content (30.1%). Therefore, we concluded that crop straw hydrolysates as carbon source could significantly promote microalgal biomass and lipid enrichment. The results could lay the foundation for the efficient conversion and utilization of straw lignocellulose raw materials, provide new knowledge for the resource utilization of agricultural wastes, as well as the theoretical basis for the efficient cultivation of microalgae using crop straw hydrolysates.

以小麦、玉米、谷子秸秆为原料,使用碱性双氧水对其进行预处理后再添加纤维素酶和木聚糖酶进行水解,以水解液中总糖含量为指标,评估水解效果并进行条件优化。将3种作物秸秆水解液作为有机碳源,探究其用于培养小球藻的效果。结果表明: 3种作物秸秆最佳水解条件为固液比1∶15、温度30 ℃、处理时间12 h。在此条件下,玉米、谷子和小麦秸秆水解液总糖含量分别达1.677、1.412和1.211 g·L-1。采用3种作物秸秆水解液培养小球藻,可显著提高小球藻的生物量和油脂含量。其中,玉米秸秆水解液效果最佳,小球藻生物量和油脂含量分别达到1.801 g·L-1和30.1%。表明利用作物秸秆水解液为碳源,可显著提高小球藻的生物量并促进油脂富集。研究结果为秸秆木质纤维素原料的高效转化利用奠定了基础,为农业废弃物资源化利用提供了新思路,也为利用秸秆水解液高效培养小球藻提供了理论依据。.

Keywords: Chlorella sorokiniana; crop straw; hydrolysis; lipid accumulation; pretreatment condition.

MeSH terms

  • Biomass
  • Carbon
  • Chlorella*
  • Hydrolysis
  • Lipids
  • Sugars

Substances

  • Lipids
  • Carbon
  • Sugars