Warming influences CO2 emissions from China's coastal saltmarsh wetlands more than changes in precipitation

Sci Total Environ. 2023 Jul 10:881:163551. doi: 10.1016/j.scitotenv.2023.163551. Epub 2023 Apr 16.

Abstract

Coastal wetlands are an important carbon sink but are sensitive to climate changes. The response of CO2 emissions to these changes differs under different hydroclimatic conditions. Here, this article used meta-analysis to synthesize data from Chinese coastal salt marshes, to analyze sensitivities for CO2 emissions, and then to assess the relative contributions of air temperature (Ta) and precipitation (Pre). This article used the ratio between potential evaporation (Ep) and Pre to divide Chinese coastal saltmarshes into water- (Ep/Pre > 1) and energy-limited regions (Ep/Pre ≤ 1). Results show that emissions are more sensitive to both Pre and Ta in water-limited regions (E¯ = 0.60 eV, slope = 0.37) than in energy-limited regions (E¯ = 0.23 eV, slope = 0.04). Comparing the relative effects of changes in Ta (△CO2 = 21.86 mg m-2 h-1) and Pre (△CO2 = 7.19 mg m-2 h-1) on CO2 emissions shows that warming contributes more to changes in CO2 emissions. The response of emissions to changes in Pre is asymmetric and shows that warmer and drier may have antagonistic effects, while warmer and wetter may have synergistic effects. There was a 2.15 mg m-2 h-1 change in emissions in energy-limited regions when Pre increased by 139.69 mm, and a decrease of -0.15 mg m-2 h-1 in emissions when Pre decreased by 1.28 mm in water-limited regions. Climate change has the greatest impact on Phragmites australis in CO2 emissions, especially under warmer and wetter conditions in energy-limited regions. This indicates that warming drives CO2 emissions, while changes in Pre (resulting in wetter or dryer conditions) can mitigate or strengthen CO2 emissions from coastal wetlands in China. This article offers a new perspective and suggests that differences in hydroclimatic conditions should be considered when discussing carbon emissions from coastal wetlands.

Keywords: CO(2) emissions; Climate change; Coastal wetlands; Meta-analysis; Precipitation sensitivity; Temperature dependence.