Triptycene-Based Polymer-Incorporated Cd x Zn1- xS Nanorod with Enhanced Interfacial Charge Transfer for Stable Photocatalytic Hydrogen Production in Seawater

Inorg Chem. 2023 May 1;62(17):6833-6842. doi: 10.1021/acs.inorgchem.3c00605. Epub 2023 Apr 17.

Abstract

Solar-driven hydrogen (H2) generation from seawater exhibits great economic value in addressing the urgent energy shortage yet faces challenges from the severe salt-deactivation effect, which could result in the consumption of photoinduced charges and decomposition of catalysts. Herein, a triptycene-based polymer was coated on the surface of a CdxZn1-xS nanorod to form a core-shell heterojunction (TCP@CZS) by using the in situ Suzuki reaction for photocatalytic H2 production from water/seawater splitting. The introduction of TCP can provide a large surface area, enrich the active site, and boost charge transfer for the proton reduction reaction. Benefiting from it, optimal TCP@CZS indicated a H2 evolution rate of 93.88 mmol h-1 g-1 with Na2S/Na2SO3 in natural seawater under simulated solar light irradiation, which was 2.2 and 1.1 times higher than that of pure Cd0.6Zn0.4S and that in pure water, respectively. Besides, the apparent quantum efficiency (AQE) of TCP@CZS-3 under 420 nm light irradiation was 22.6% in seawater. This work highlights the feasibility of the triptycene-based porous organic polymer as an efficient catalyst for solar energy conversion in seawater.