Repairable Macroscopic Monodomain Arrays from Block Copolymers Enabled by Photoplastic and Photodielectric Effects

ACS Nano. 2023 May 9;17(9):8367-8375. doi: 10.1021/acsnano.2c12800. Epub 2023 Apr 17.

Abstract

Upon exposure to UV light (120 mW/cm2, λ = 365 nm), a trans-cis isomerization occurs in a cylinder-forming, azobenzene-containing block copolymer of polydimethylsiloxane-b-poly((4(phenyldiazenyl)phenoxy)hexyl acrylate) (PDMS-b-PPHA) that enables the generation of monodomains of healable, long-range ordered arrays of nanoscopic domains over macroscopic distances. The trans-cis isomerization gives rise to a significant increase in the dielectric constant (from 6.52 to 19.8 at 100 Hz, photodielectric behavior) and a dramatic decrease in the Tg (from 54 to 1 °C, photoplastic behavior) of the PPHA block. By combining these characteristics with an in-plane electric field, macroscopic monodomains of near-perfectly aligned cylindrical microdomains are achieved at low temperatures, and a damage repair is clearly uncovered, where the 300 nm wide scratches can be completely healed at 40 °C, leaving a smooth, uniformly thick film where the continuity and orientation of the aligned microdomains are restored. Subsequent exposure to visible light causes a cis-trans isomerization, increasing the matrix Tg to 54 °C, producing highly oriented and aligned PDMS cylindrical microdomains in a PPHA matrix.

Keywords: azobenzene-containing block copolymers; electric field; long-ranged nanopatterning; photoplastic directed self-assembly.