Feasibility of redo-TAVI in self-expanding Evolut valves: a CT analysis from the Evolut Low Risk Trial substudy

EuroIntervention. 2023 Jul 17;19(4):e330-e339. doi: 10.4244/EIJ-D-22-01125.

Abstract

Background: Transcatheter aortic valve implantation in an existing transcatheter valve (redo-TAVI) pins the index valve leaflets in the open position (neoskirt), which can cause coronary flow compromise and limit access. Whether anatomy may preclude redo-TAVI in self-expanding Evolut valves is unknown.

Aims: We aimed to evaluate the anatomical feasibility of redo-TAVI by simulating implantation of a balloon-expandable SAPIEN 3 (S3) within an Evolut or an Evolut within an Evolut.

Methods: A total of 204 post-TAVI computed tomography (CT) scans from the Evolut Low Risk CT substudy were analysed. Five redo-TAVI positions were evaluated: S3-in-Evolut inflow-to-inflow, S3 outflow at Evolut nodes 4, 5, and 6, and Evolut-in-Evolut inflow-to-inflow. Univariable modelling identified pre-TAVI clinical characteristics, CT anatomical parameters, and procedural variables associated with coronary flow compromise using the neoskirt height and post-TAVI aortic root dimensions.

Results: The risk of coronary flow compromise was lowest when the S3 outflow was at Evolut node 4 (20%) and highest when at Evolut node 6 (75%). The highest likelihood of preserving coronary accessibility occurred with the S3 outflow at Evolut node 4. Female sex and higher body mass index were associated with a higher risk of coronary flow compromise, as were a smaller annulus diameter, lower sinus of Valsalva height and width, shorter coronary height, smaller sinotubular junction diameter, and shallower Evolut implant depth.

Conclusions: The feasibility of redo-TAVI after Evolut failure is multifactorial and relates to the native annular anatomy, as well as the implantation depth of the index and second bioprostheses. Placement of an S3 at a lower Evolut position may reduce the risk of coronary flow compromise while preserving coronary access.

Clinicaltrials: gov: NCT02701283.

Publication types

  • Clinical Trial

MeSH terms

  • Aortic Valve / diagnostic imaging
  • Aortic Valve / surgery
  • Aortic Valve Stenosis* / diagnostic imaging
  • Aortic Valve Stenosis* / surgery
  • Feasibility Studies
  • Female
  • Heart Valve Prosthesis*
  • Humans
  • Prosthesis Design
  • Tomography, X-Ray Computed
  • Transcatheter Aortic Valve Replacement* / methods
  • Treatment Outcome

Associated data

  • ClinicalTrials.gov/NCT02701283